
PUBLICATIONS

NBS
A 11 ID 2 L2L527

NAT'L INST OF STANDARDS & TECH R.I.C.

OED: Object-Oriented Editor

J. C. Boudreaux

U.S. DEPARTMENT OF COMMERCE
National Bureau of Standards

National Engineering Laboratory

Center for Manufacturing Engineering

Automated Production Technology Division

Gaithersburg, MD 20899

March 1987

W*CAU o*

U.S. DEPARTMENT OF COMMERCE
AL BUREAU OF STANDARDS

100

• U 5 6

87-3530

1987

NBSIR 87-3530

OED: OBJECT-ORIENTED EDITOR

J. C. Boudreaux

U.S. DEPARTMENT OF COMMERCE
National Bureau of Standards

National Engineering Laboratory

Center for Manufacturing Engineering

Automated Production Technology Division

Gaithersburg, MD 20899

March 1987

U.S. DEPARTMENT OF COMMERCE, Malcolm Baldriga, Secretary

NATIONAL BUREAU OF STANDARDS. Ernest Amfelsr. Director

OED: Object-oriented EDitor *

J.C. Boudreaux

Center for Manufacturing Engineering

National Bureau of Standards

1 Introduction

LISP is one of the oldest programming languages still in active use /5/. It was conceived

by John McCarthy and his fellow workers in the late 1950’s. Unlike its slightly older pre-

decessor, i.e., FORTRAN, LISP has often been described as the first elegant programming

language. Though many beginning users, put off by the piles of parentheses, may find this

remark hardly creditable, I believe that it is substantially correct /l/. LISP recognizes

one and only one family of compound objects, called lists, and this single family provides

supports everything in the LISP domain. One measure of the expressive power of lists is

that they permit the elimination of such traditional distinctions as those between programs

and data.

In / 1/ and /2/, I have discussed other features of LISP, including the use of typefree

(universal) variables and the definability of higher-order functionals. In this paper, I will

describe an object-oriented editor, called OED, using which one may create and modify

lists. In the papers just cited, I focus on one LISP dialect, called FranzLISP, and will do

so again here. However, the constructions given below can be carried with similar ease in

other dialects.

Before building the editor, let’s examine the notion of lists more closely. As a first

approximation, we may say that lists are entities with heads and tails

,

such that any object,

including list, can be a head; but only a list can be a tail. There is one headless list which

is called nil. With the exception of nil, every list has one and only one head. The head of

a list is returned by the primitive LISP function car. Every list has one and only one tail,

which is returned by the primitive LISP function cdr. If X is any legitimate LISP object

and L is a list, then the primitive LISP function cons, when applied to X and L, returns

the list whose car is X and whose cdr is L. The formation rules for lists are summarized

by the following grammar:

<list>- ::= nil
|

(<head>- <tail>)

<head>- ::= <any-atomic-entity>
|

<list>-

-<tail>- <list>-

The non-terminal < any-atomic-entity>- is usually more fully elaborated. Just as set theory

can be based entirely on the null set so also is nil a formally adequate basis for LISP,

thereby explaining its curious role of a component-less (atomic) list. But in practice such

a parsimonious basis of atomic entities is extended to include such familiar entities as

'Certain commercial products are identified in this paper in order to adequately specify the experimental

procedure. Such identification does not imply recommendation or endorsement by the National Bureau of

Standards, nor does it imply that the products identified are necessarily the best available for the purpose.

1

symbols, strings, integers, and floating point numbers. So long as reasonable choices are

made, an actual inventory of atoms will not be necessary. In fact, the following rule is

sufficient: atomic entities are those objects which the LISP function atom maps onto the

Boolean value t, i.e., true
;
and lists are those objects which the LISP function listp maps

onto t. Once again, the only objects mapped onto t by both functions is nil.

The preceding grammar illustrates the structural simplicity of the LISP domain. But

even this simple domain can be supported by severed notational schemes. Since notational

schemes take a bit of effort to appreciate, a few preliminary comments are now in order.

The domain of natural numbers may be defined as the smallest set containing the 0

object and closed under the successor operation S:

<natnum>- ::= 0
|

S<natnum>-

From this grammatical definition, we may suppose that all natural numbers are represented

in the following sequence:

0, SO, sso,

But this supposition is only partly correct. The domain of natural numbers is closed

under such familiar arithmetic functions as addition, multiplication, and so on. These

functions can be expressed in the field of first-order arithmetic in the usual way. This

further elaboration of the grammar for natural numbers exactly parallels the elaboration

of the primitive LISP functions.

In a sense, the presentation of an object domain shows what features are essential, but

to render the domain tractable it is often necessary to present a notational scheme. Of

course, the grammar already does this, e.g., the natural number three is SSSO, but such

tally-based notational schemes are wildly inefficient. The Arabic notational scheme is a

major historical achievement, and one that required creative insight.

Though list objects are not nearly as familiar as natural number objects, the principles

underlying the construction of efficient notational systems must still be applied. In this

case, as in the preceding case, the natural grammar is not very efficient, which means that

the suggested rules for putting parentheses requires many more than are actually needed.

The customary notation for lists may best be seen in an example:

(one two three),

which is the list whose car is one and whose cdr is (two three). In the natural grammar,

this list object would be parenthesized:

(one (two (three nil)))

which shows the advantage of the modified scheme.

Finally, let’s define the notion of equality on the domain of lists. As a first approximar

tion, we may say that two lists one and another are equal if an only if the car of one is

equal to the car of another, and the cdr of one is equal to the cdr of another. This

definition is inadequate. To define equal recursively, then we need ground cases to stop the

recursive descent. The ground cases are precisely the instances of < any-atomic-entity>-

.

If

we assume that an equality relation has already been defined on this symbolic collection,

say atom_equal, then a more accurate definition of equal may be presented in LISP as

follows:

2

-

(def equal

(lambda (X Y)
(cond

((and (atom X)(atom Y))
(atom-equal X Y))
((and (listp X)(listp Y))
(and

(equal (car X)(car Y))
(equal (cdr X)(cdr Y)))

(t nil))))

2 The Editor Defined

In the conventional sense, an editor is a collection of functions to manipulate textfiles.

In this paper, the term is being used in a related sense for a collection of functions to

manipulate list objects.

The Object-oriented EDitor (OED) consists of a set of LISP functions which may be

loaded into the LISP environment. Once loaded, an editing session is started by introducing

the object to be edited as the argument of the function oed-edit.

(def oed-edit

(lambda (obj)

(setq $obj obj)

(setq $tmp $obj)

(setq $lmap nil)

(cond ((full- list $obj)

(setq $view (car $tmp)))

(t (princ “Illegal Object”)))

))

Whenever the user supplies an argument, this function initializes the global variables:

$obj, which designates the object being edited; $tmp, which designates the component

actually being reviewed; $view, which designates the current position of the OED cursor;

and $!map, which designates a map-like trace of the current position. The peculiarities of

nil as the only atomic list have already been noted. To block such LISP errors as would be

occasioned by car-ing nil or any other atom, the function oed-edit, and other functions

in this module, make use of the auxiliary function full-list:

(def full-list

(lambda (lispval)

(and (listp lispval)

(not (equal lispval nil)))

))

This function is Boolean-valued and returns t if its argument is a non-nil list; otherwise, it

returns nil.

To focus our attention on the issues raised by these functions, it is best to consider a

specific example:

(oed-edit ’(A (B C) D))

3

then the global variables are assigned the following values:

$obj = (A (B C) D)
$tmp = (A (B C) B)
$view = A
$lmap — nil

Henceforth, the semantic interpretation of OED functions will be explained in terms of the

effect of the function on the global variables. This can be done very easily by using the

special “box” symbol to mark the current position of the OEB cursor:

(A (B C) B)

The cursor will always be positioned immediately to the left of $view.

Many computer scientists, especially those who advocate structured or disciplined pro-

gramming, would deplore the use of global variables. Since most dialects of LISP have

no mechanism for controlling the visibility of global variables, it is impossible to deny the

dangers of allowing uncontrolled access to variables. Some protection is provided by using

special functions to retrieve global values:

(def oed-object (lambda () $obj))

(def oed-view (lambda () $view))

But this is at best only a partial solution. A much better solution, and one adopted

in AMPLE
,

is the construction of workspaces. Workspaces are environments in which

the visibility of and access to variables are carefully controlled by the end user. This

construction will be described in a forthcoming publication.

2.1 Position Control

The LISP functions oed-right, oed-left, oed-down, and oed-up are used to control the

position of the OED cursor. The most reasonable approach is to study first oed-right and

oed-left, and then oed-down and oed-up.

(def oed-right

(lambda ()

(cond ((and (full-list $tmp) (full-list (cdr $tmp)))

(setq $tmp (cdr $tmp))

(setq $lmap (cons ’d $lmap))

(setq $view (car $tmp)))

(tt))

))

The effects of the positioning functions using the example given above are recorded in

Figure 1. Notice that another oed-right after the final one shown would bring about no

further modification of the global values. That is, since (cdr $tmp) now has the value nil,

the only non-nil cond clause in the definition of oed-right is the otherwise clause, which

simply returns t and has no effect on the values of the global variables.

Intuitively, oed-left should be the converse of oed-right, and it is: oed-left un-does

the effects of the last oed-right. For this reason, oed-left is a more complicated function

than oed-right, if only because it makes essential use of the global variable $lmap:

4

(def oed-left

(lambda ()

(cond ((equal (car $lmap) ’d)

(setq $lmap (cdr $lmap))
(cond ((null $lmap)

(setq $tmp $obj)

(setq $view (car $tmp)))

(t

(setq $tmp
(apply

(concat ’c (implode $lmap) ’r)

(list $obj)))

(setq $view (car $tmp))

)))

(tt))

))

Recall that if oed-right has any effect at all on the global variables, then the character d
is pushed on the stack $lmap. The outermost cond of this definition says that a oed-left

move is permissible, only if the car of $lmap is equal to d; otherwise, the only effect of

this command is the return of the value t. If the antecedent of the first cond clause is

satisfied, then $lmap is popped, and the inner cond is evaluated. If $lmap is null, then

we must have already returned to the top of the object, with the anticipated effect on the

global variables. On the other hand, if $lmap is not null, then the effect is to apply the

function whose name is constructed by evaluating

(concat ’c (implode $lmap) ’r)

to the global variable $obj. Given the special properties of the c. . .r context for the LISP

interpreter, Slraap must always be a list of d’s and a’s, a fact which will be obvious when

we consider the final positioning functions. The last transaction show in Figure 1 shows

the effect of one application of oed-left.

The positional operations so far considered have been based on cdr, i.e., a oed-right

move is accomplished by cdr-ing $tmp, and a oed-left move by inverse cdr-ing $tmp, if

we are prepared to understand the second notion in the sense just defined. The next pair of

cursor control functions are based in a similar way upon car-ing (oed-down) and inverse

car-ing (oed-up). Let’s first consider the definition of oed-down:

(def oed-down
(lambda ()

(cond ((atom $view) t)

(t (setq $tmp $view)

(setq $lmap (cons ’a $lmap))

(setq $view (car $tmp))

))

))

According to this definition, if $view is an atom, then then oed-down simply returns the

value t and has no effect on the global variables. But if $view is a list, then $tmp is set

to value $view, the character a is pushed onto $lmap, and the new value of Sview is set

to the car of Strop. The effect of this operation is shown in Figure 2. Note carefully the

5

current values of the global variables. If another oed-dowm move were to be attempted,

it would result in no change to the global variables, since $view is atomic.

The inverse operation oed-up is more complicated. To see the reason for this complex-

ity, let’s try to describe this operation intuitively. Clearly, an oed-up operation presupposes

a previous oed-down. Thus, if $!map is null, then there are no preceding oed-downs,
which means that the operation should re-initialize these values and return. If $!map is

not null, then we have to repeatedly pop this stack until we find the trace of the last oed-
down, indicated by an a. Having discovered this trace - or emptied the stack - we then

have to pop the stack once more, i.e., set $lmap to the cdr of $Imap, and then perform

the same kind of inverse operation as we did above. This algorithm, including the iterative

search for the last oed-down trace, is expressed in the following definition:

(def oed-up
(lambda ()

(prog ()

here

(cond ((null $lmap)

(setq $tmp $obj)

(setq $view (car $tmp))

(return))

((equal (car $knap) ’d)

(go here))

((equal (car $lmap) ’a)

(setq $lmap (cdr $lmap))

(setq $tmp
(apply

(concat ’c (implode $lmap) ’r)

(list $obj)))

(setq $view (car $tmp))

(return)))

)))

Iteration is expressed by the LISP prog feature, in the scope of which such unbound

variables as here are understood to be location markers or labels. In fact, it is only in this

micro-environment that this primitive but useful control structure, with its attendant go,

is allowed.

2.2 Inserting and Appending

The position control functions do not effect the value of $obj. Indeed since there only power

is to alter the position of an imaginary cursor, it would be wrong to allow them to introduce

any such change. In this section we will define two functions which do enable us to change

this global variable: oed-insert and oed-append. These functions differ in the relative

placement of the added material. That is, oed-insert places all of the components of text,

in order, just before the Iview; and oed-append places then just after. These functions

are iterative versions of the primitive auxiliary functions basic-insert and basic-append,

which are defined immediately after the main functions.

(def oed-insert

(lambda (text)

6

:V

(prog (inval)

(setq inval (reverse text))

here

(cond ((null inval) (return))

(t (basic-insert (car inval) $tmp)
(setq inval (cdr inval))

(go here))))

(setq $view (car $tmp))

))

(def basic-insert

(lambda (lispval place)

(cond ((null lispval) nil)

(t (attach lispval place)))

))

The function oed-insert is a function which obtains the text to be inserted, reverses the

order of the text components, and then inserts each component by iteratively cdr-ing

through inval. The function basic-insert is an operation which destructively modifies the

second argument by gluing it as a cdr onto the LISP object

(cons x nil)

For completeness, I include a definition of attach which is adapted from Kaisler /4/:

(def attach

(lambda (x 1st)

(cond ((listp 1st)

(rplaca

(rplacd 1st (cons (car lst)(cdr 1st)))

x))

(tt))

))

The transactions in Figure 3 show the effect of oed-insert in our familiar test case. The

need for destructive manipulations is to ensure that the modifications are uniformly visible,

even through the global variable $obj.

The second operation in this section is oed-append which differs from oed-insert

with respect to the placement of the appended text. As before, it will be convenient to

distinguish oed-append from the auxiliary function basic-append:

(def oed-append
(lambda (text)

(prog (apval)

(setq apval (reverse text))

here

(cond ((null apval) (return))

(t (basic-append (car apval) $tmp)
(setq apval (cdr apval))

(go here))))

))

7

(def basic-append

(lambda (lispval place)

(rplacd place (cons lispval

(cdr (copy place))))

))

2.3 Replacing and Removing

The preceding sections have concentrated on position control and on the addition of new
material either by oed-insert or oed-append. In this section we will be considering the

converse operations which allow the elimination or deletion of material. The first deletion

operation, called oed-replace, makes use of an important relationship between global

variables, specifically, the fact that $view is always the car of Strap. This relation allows

a very simple definition of oed-replace:

(def oed-replace

(lambda (text)

(rplaca Strap text)

(setq $view (car Strap))

))

In this case, the object being viewed is replaced by the argument of oed-replace. Moreover,

this change is visible throughout the environment because it is brought about by surgery

on the actual lists.

The second deletion operation, called oed-remove, is a more general and more useful

operation. It causes the deletion of the current viewed object, and then it cause the object

to be re-glued together. The re-gluing needs careful consideration:

(def oed-remove

(lambda ()

(cond ((equal (cdr Strap) nil)

(cond ((equal (car Slmap) ’d)

(setq Slmap (cdr Slmap))

(cond ((null Slmap)

(setq Stmp Sobj)

(setq Sview (car Strap))

(rplacd Stmp nil))

(t

(setq Stmp (apply (concat

’c (implode Slmap) ’r) (list Sobj)))

(setq Sview (car Strap))

(rplacd Stmp nil)

)))

((equal (car Slmap) ’a)

(setq Slmap (cdr Slmap))

(setq Stmp (apply (concat

’c (implode Slmap) ’r) (list Sobj)))

(rplaca Stmp (cadr Stmp))

(rplacd Stmp (cddr Stmp))

(setq Sview (car Stmp)))

8

(t nil)))

(t (rplaca $tmp (cadr $tmp))
(rplacd $tmp (cddr $tmp))
(setq $view (car $tmp))))

))

The definition first determines whether or not $view is the rightmost component of $tmp.
If it is not, then oed-remove uses rplaca and rplacd to replace the car and cdr of $tmp
with the cadr and cddr of $tmp, thereby effectively deleting the original viewed object.

The oed-remove operation is then completed by setting the value of $view to the car of

the modified $tmp, as usual.

On the other hand, if $view is the rightmost component, i.e., if the cdr of $tmp is null,

then a successful deletion requires additional information. We need to know whether or

not $view has a component to its oed-left. Fortunately, this question can be answered by

popping $lmap, which must yield one and only one of the following outcomes: the character

d, which identifies oed-right as the previous operation and implies that $view has a oed-

left neighbor; the character a, which identifies oed-down as the previous operation and

implies that $view has no oed-left neighbor; or an empty-stack error, which implies that

we are at “root” level and that $obj is a list with one and only one component, i.e., a list

of the form:

(cons x nil)

for some LISP value x. In each case, the appropriate deletion and re-gluing operation is

described above. In the third case, the value nil is returned, which is precisely the values

that is obtained by removing the head of a list with a null tail. The transactions in Figure

4 show the effect of oed-remove.

3 An Application

There are many potential applications for OED, but the one which is very important for

the AMPLE project is the use of OED to support procedural and data abstraction. The

primary benefit of abstraction is to isolate the user from implementational details, while

presenting clearly all of the information that the user actually needs. In this section, I will

illustrate OED within the context of a deliberately simplified variant of the AMPLE lexical

processor, called Lexx.

As explained in /2/ and /3/, AMPLE/core is the collection of LISP representations

of entities which are important in the manufacturing domain, including parts, devices,

sensors, and manufacturing processes, as well as more familiar entities as data types. Unless

carefully protected, building appropriate representations in AMPLE/core is a project which

would force users to directly manipulate LISP objects. Though this requires a very modest

level of skill, it tends to place emphasis on just the wrong set of issues by focusing on

minute and tedious implementational details that are of little intrinsic importance. The

approach to be discussed in this section introduces a sharp distinction between the LISP

representation and the interactive display form which is used to create the representation

and then to view it. In /2/, an Ada-like display form was adopted, and it will also be

illustrated in this section.

For the purposes of this example, let’s consider a lexical function, called buildtype,

which may be used to build a type definition. Two items of information must be supplied:

a symbol, which is the type name, and a type constructor
,
say array. Once this information

9

is provided, the users must be prepared to respond appropriately to whatever questions

the system asks. To keep this discussion within manageable bounds, I have decided not to

present the extensive error-checking mechanisms upon which Lexx depends; and I have also

decided to consider only the array type constructor:

(def buildtype

(lambda (type-name)

(princ

(concat “Type constructor for ” type-name ”))

(setq category (read))

(cond

((same category ’array)

(buildarray type-name))

(t (princ

(concat category “Not Implemented.”))))

))

The function buildtype, as presently configured recognizes one type constructor, namely,

array. This supply can be extended by adding new cond clauses, including clauses for

such familiar type constructors as enumeration and record, as well as those less familiar

types constructors, such as net and device that have been introduced in AMPLE. Once

a type constructor is recognized, control is passed to an auxiliary function which has been

designed to build objects of that type. In this case, the auxiliary function is buildarray:

(def buildarray

(lambda (type-name)

(prog (c-type dim)

(terpr)(terpr)

(oed-edit
(
cons type-name (list ’array)))

(oed-right)

(princ (concat “Component type of” type-name ”))

(setq c-type (read))

(terpr)

(princ (concat “Dimension of” type-name “s ”))

(setq dim (read))

(return

(oed-append (list (cons dim (list c-type)))))

)))

This function obtains all necessary information from the user and then invokes OED to

constructs the appropriate object, which may then be entered into AMPLE/core. Notice

that buildtype initiates OED with a list whose head is type-name and whose tail is a

list containing only the type constructor symbol array. After the user makes appropriate

responses, the edited object is then returned to the calling environment. It should also

be noticed that the symbols c-type and dim, are declared immediately after prog, which

identifies them as local variables. The following session illustrates the use of this lexical

function:

10

(buildtype ’VECTOR)

Type constructor for VECTOR: array

Component type of VECTOR: float

Dimension of VECTOR: (1 3)

(VECTOR array ((1 3) float))

In this case, the type object is simple and easy to read; but in more complicated cases, some

less severe display form would probably be clearer and easier to interpret. Though there are

many alternatives, the following function introduces a display form which is superficially

Ada-like:

(def displaytype

(lambda (type-object)

(prog (t-name t-constructor t-definition)

(setq t-name (car type-object))

(setq t-constructor (cadr type-object))

(setq t-definition (cddr type-object))

(cond

((equal t-constructor ’array)

(terpr)(terpr)

(princ (concat

“typedef ”

t-name
“ is array ”))

(princ (caar t-definition))

(princ “ of ”
)

(princ (cadar t-definition))

(princ “;”)

(terpr)(terpr)

(return t)

)

(t (terpr)(terpr)

(princ “Not Implemented”)
(terpr)(terpr))

(return nil)

)

)))

The next session shows the effect of displaytype on the type definition just constructed:

->- (displaytype (oed-object))

typedef VECTOR is array (1 3) of float;

4 Conclusion

Subsequent reports in this series will be investigating other components of the AMPLE
system. This report is being released early on because OED is a fundamental tool which

all of the components depend upon. That is, OED is the only mechanism available for the

creation and modification of object representations in AMPLE/core.

11

'

Bibliography

1. Boudreaux, J.C. “Problem Solving and the Evolution of Programming Languages,”

The Role of Language in Problem Solving-1, edited by R. Jernigan, B.W. Hamill, and

D.M. Weintraub, North-Holland, 1985; 103-126.

2. Boudreaux, J.C. “AMPLE: A Programming Language Environment for Automated

Manufacturing,” The Role of Language in Problem Solving - 2\ edited by J.C. Boudreaux,

B. Hamill, and R. Jernigan, North Holland, Amsterdam, 1986; 359-375.

3. Boudreaux, J.C. “The AMPLE Project,” National Bureau of Standards Interagency

Report, NBSIR 86-8196.

4. Kaisler, S.H. INTERLISP: The Language and Its Usage
,
John Wiley and Sons; 1986.

5. Wilensky, R. LISPcraft, W.W. Norton; 1984.

12

(oed-edit ’(A (B C) D))

(A (B C) D)

->- (oed-right)

(A n(B C) D)

->- (oed-right)

(A (B C) nD)

->~ (oed-left)

(A D(B C) D)

$obj = (A (B C) D)
$tmp = ((B C) D)
$view = (B C)

$lmap = (d)

Figure 1. The first session shows the effect of oed-left and oed-right on the position

of the (imaginary) cursor. The values of the global values after the execution of the last

command are given in the table.

->- (oed-down)

(A (OB C) C)

$obj = (A (B C) D)
$tmp = (B C)

$view = B
$!map = (a d)

->- (oed-up)

(A m(B C) D)

->- (oed-up)

(A (B C) D)

Figure 2. This session continues the previous one and shows the effects of oed-up and

oed-down on cursor position.

13

->- (oed-insert ’(X Y))

(X Y A {B C) D)

$obj = (X Y A (B C) D)
$tmp — (X Y A (B G) D)
$view — X
$lmap = nil

->- (oed-right)

(X nY A (B C) B)

->- (oed-insert ’((Z)))

(X (Z) Y A (B C) B)

$obj = (X (Z) Y A (B C) B)
Strap = ((Z) Y A (B C) B)
$view = (Z)

Slmap = (d)

->- (oed-append ’(1 2))

(X (Z) 1 2 Y A (B C) B)

$obj = (X (Z) I 2 Y A (B C) B)
Strap = ((Z) 1 2 Y A (B C) B)
$view = (Z)

$lmap = (d)

Figure 3. This session illustrates the effects of oed-insert and oed-append on the

results obtained in the second session. The changes in the global variables clearly exhibit

the distinction between these two operations.

14

->- (oed-remove)

(X ! 2 Y A (B C) D)

->- (oed-remove)

(X D2 Y A (B C) B)

->- (oed-remove)

(X nY a (B C) D)

->- (oed-remove)

(X da (B C) D)

->- (oed-left)

(X A (B C) D)

->- (oed-remove)

(A (B C) D)

Figure 4. This sessions shows the effects of applications of oed-remove. Notice that

the final object is precisely the same as the one that we started with.

15

NBS-114A irev. 2-80

U.S. DEPT. OF COMM.

BIBLIOGRAPHIC DATA
SHEET (See instructions)

1. PUBLICATION OR
REPORT NO.

NBSIR 87-3530

2. Performing Organ. Report No 3. Publication Date

MARCH 1987
4. TITLE AND SUBTITLE

OED: Object-oriented Editor

5. AUTHOR(S)
J.C. Boudreaux

6. PERFORMING ORGANIZATION (If joint or other than NBS, see in struction s)

NATIONAL BUREAU OF STANDARDS
DEPARTMENT OF COMMERCE
WASHINGTON, D.C. 20234

7. Contract/Grant No.

8 . Type of Report & Period Covered

9. SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (Street. City. State, ZIP)

10. SUPPLEMENTARY NOTES

Document describes a computer program; SF-185, FIPS Software Summary, is attached.

11. ABSTRACT (A 200-word or less factual summary of most significant information. If document includes a significant
bi bl lography or literature survey, mention it here)

In this paper an object-oriented editor, called OED, is defined in the FranzLISP

programming language. Though editors are usually associated with sets of functions

to manipulate textfiles, in this work the term is being used to characterize a

family of LISP functions which create and modify formal representations of objects

in AMPLE/Core.

12. KEY WORDS (Six to twelve entries; alphabetical order; capitalize only proper names' and separate key words by semicolon s)

AMPLE/Core; formal representation; FranzLISP; object-oriented editor

13. AVAILABILITY 14. NO. OF
PRINTED PAGES

J
Uni imited

| |

For Official Distribution. Do Not Release to NTIS

j
Order From Superintendent of Documents, U.S. Government Printing Office, Washington, D.C.

~ 20402.

18

15. Price

[X
|

Order From National Technical Information Service (NTIS), Springfield, VA. 22161 $9.95

USCOMM*DC 0O43-P8O

